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Langevin Equation of Collective Modes of
Bose�Einstein Condensates in Traps
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A quantum Langevin equation for the amplitudes of the collective modes in
Bose�Einstein condensate is derived. The collective modes are coupled to a ther-
mal reservoir of quasi-particles, whose elimination leads to the quantum
Langevin equation. The dissipation rates are determined via the correlation
function of the fluctuating force and are evaluated in the local-density approxi-
mation for the spectrum of quasi-particles and the Thomas�Fermi approxima-
tion for the condensate.

I take great pleasure in dedicating this paper to Gregoire Nicolis on the
occasion of his sixtieth birthday.
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1. INTRODUCTION

The realization of Bose�Einstein condensates of very rarefied evaporatively
cooled gases of alkali atoms in magnetic traps(1) offers the unique
possibility to test ab initio manybody theories in the laboratory.(2) One
very fertile field has been the experimental and theoretical investigation of
collective modes of the condensates, both for zero and finite temperatures.
For reviews of the experimental and theoretical work see ref. 3 and refs. 4,
5 respectively. As opposed to conventional superfluids like He-II(6, 7) in the
new systems the collision-less regime is very naturally realized. In this
regime the dominant damping mechanism for collective modes is Landau-
damping, whose temperature dependence in spatially homogeneous con-
densates in the regime kBT large compared to the chemical potential + has
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first been studied by Sze� pfalusy and Kondor.(8) Recent investigations, (9�12)

though more exact, led to similar results, differing by a prefactor close to
1 for the damping rate. For condensates in traps Landau damping of low-
lying modes is more difficult to calculate, and additional approximations
are needed to cope with the fact that momentum is not conserved in a trap.
The damping rate of collective modes in traps has been calculated in ref. 13
using the local density approximation and, in addition, a classical approxi-
mation for the correlation function whose Fourier-transform determines
the cross-section of Landau-scattering. For the isotropic breathing mode in
isotropic traps the Landau-damping has been calculated numerically(14) by
evaluating the coupling to a great number of discrete quasi-particle modes
and subsequently introducing some smoothing. The quasi-continuum
coupled to the collective mode under study was displayed explicitly in this
work. Theories using an extension of the approach of ref. 8 via the dielec-
tric formalism(15, 16) and an approach via a time-dependent mean field
scheme(17) have also been given.

In the present paper a very direct approach(18) to the dissipative equi-
librium and nonequilibrium dynamics of collective modes in trapped
Bose�Einstein condensates via quantum Langevin equations is put forward.
Because of the discreteness of the mode-spectrum in traps the problem is
formally similar to the quantum-optical problem of discrete modes in a
laser, for which the formulation in terms of quantum Langevin equations
has been very useful.(19)

In the next section the microscopic description of a trapped
Bose�Einstein condensed gas is briefly set up. Then we recall the basics of
the quantum Langevin equation of a boson mode. The derivation of the
quantum Langevin equation of a collective mode follows. The damping
rates are then evaluated in the local density and the Thomas�Fermi
approximation. The last section contains a discussion of our results.

2. MICROSCOPIC EQUATIONS OF MOTION

The weakly interacting Bose-gas in a trap in standard notation is
described by the Hamiltonian

H� =| d 3x �� + {&
�2

2m
{2+V(x)&++

U0

2
�� +�� = �� (1)

The presence of a Bose�Einstein condensate means that many (N0>>1)
particles occupy a single normalized mode of a macroscopic classical
matter wave, determined as the mode of lowest energy of the classical
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Hamiltonian corresponding to Eq. (1). It satisfies a classical wave equation,
the Gross�Pitaevskii equation, (21) which we take in an extension defined by
the so-called Popov-approximation, (22) including the interaction of the con-
densate with the density n$ of thermal atoms, but neglecting its interaction
with the pair amplitude (�� �� )&�2

0 of thermal particles

&(�2�2m) {2�0+(V(x)+U0(N0 |�0(x)| 2+2n$(x))) �0=+�0 (2)

For given N0 the chemical potential + follows by imposing the normaliza-
tion condition on �0 .

The presence of the highly occupied condensate mode makes the
decomposition of the Heisenberg field-operator

�� (x, t)=(- N0 �0(x)+�� $(x, t)) exp(&i+t��) exp(i,) (3)

useful. - N0 exp(i,) is the complex amplitude of the classical condensate
mode in equilibrium. �� $(x, t) is the field operator for the particles outside
the condensate. We shall neglect fluctuations of the number of atoms in the
condensate and also fluctuations of the phase of the condensate, which can
be shown to occur on a time-scale much longer than the relaxation-time of
the collective modes.(18)

The Hamiltonian splits up according to H� =H0+H� 1+H� 2+H� 3+H� 4 ,
with a c-number term H0 which need not concern us here, and

H� 1=- N0 | d 3x((V(x)&++U0(N0 |�0 | 2+2n$)) �0*�� $

+(hermitian conjugate))

H� 2=| d 3x \�� $+ \&
�2{2

2m
+V(x)+2U0n$&++ �� $

+
U0N0

2
(�*2

0 �� $2+�2
0�� $+2+4 |�0 | 2 �� $+�� $)+

H� 3=U0 - N0 | d 3x(�0*(�� $+�� $&2n$) _�� $+(hermitian conjugate))

H� 4=
U0

2 | d 3x(�� $+�� $+�� $�� $&4n$�� $+�� $)

The splitting is here done in such a way that the term H� 1 vanishes due to
Eq. (2) and the part H� 2 describes the linearized quantum excitations
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around the solution of (2). H� 2 is diagonalized by introducing quasi-particle
operators :̂& , :̂+

& by the standard Bogoliubov transformation

�� $(x, t)=:
&

(u&(x) :̂&(t)+v&*(x) :̂+
& (t))

where u& , v& satisfy the usual Bogoliubov�De Gennes equations

\
&

�2

2m
{2+Ueff (x)&�|&

K*(x)

K(x)

&
�2

2m
{2+Ueff (x)+�|&+ \u&(x)

v&(x)+=0 (4)

with the abbreviations

Ueff (x)=V(x)+2U0(N0 |�0(x)|2+n$(x))&+
(5)

K(x)=N0 U0 �0(x)2

Equation (4) is consistent with the ortho-normality conditions � d 3x(u&u*+
&v&v*+)=$&+ and � d 3r(u&*v+&u*+v&)=0, which guarantee the Bose com-
mutation relations of the :& , :+

+ . The decomposition of �� and �� $ together
imply that N=N0+� n$(x) d 3x with n$=�+ (n� +( |u+ |2+|v+ |2)+|v+ |2).

Within Bogoliubov(�Popov) theory the terms H� 3 , H� 4 of the total
Hamiltonian are neglected and the quasi-particle operators :̂& in the
Heisenberg-picture obey the Heisenberg equations of motion :̂* &=&i|& :̂& .
In this approximation the collective modes and the quasi-particles have
infinite lifetime. In reality, however, the lifetime will be limited by the scat-
tering of quasi-particles in any given mode & with other quasi-particles
from the thermal reservoir, which is described by H� 3 and H� 4 . One way to
describe this is the quantum Langevin equation.

3. QUANTUM LANGEVIN-EQUATION OF A HARMONIC
OSCILLATOR

Let us recall here briefly the quantum Langevin equation, in Markoff
approximation, of a harmonic oscillator as it is commonly used in quan-
tum optics.(19, 20) For a detailed discussion of its derivation I refer to ref. 20.
Equation (3.4.63) of that reference states the quantum Langevin equation
in resonance or ``rotting wave'' approximation for a harmonic oscillator,
described by the Bose operators â, â+, in interaction with a thermal reser-
voir at temperature T. It takes the form

â* (t)=&i0â(t)&#â(t)+!� (t) (6)
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where 0 is the frequency of the oscilator including a frequency shift due to
the oscillator's coupling to a heat reservoir, # is the damping rate, and !� (t)
is a Gaussian noise-operator. In Markoff approximation it has the correla-
tion functions

(!� +(t) !� (t$))=
2#

exp(�0�kBT )&1
$(t&t$) (7)

ensuring the correct normally ordered expectation values in equilibrium,
and

([!� (t), !� +(t$)])=2#$(t&t$) (8)

ensuring the correct Bose commutation relations of â(t), â+(t) for all times.
The fluctuation-dissipation relation therefore permits us to infer the
properties of !� (t) if the coefficient of the dissipative term is known. Alter-
natively we can infer the dissipation rate # from a microscopic expression
for !� (t) either by using (7) or, alternatively, (8).

4. QUANTUM LANGEVIN-EQUATION OF COLLECTIVE
MODES

We shall here confine our attention to the dynamics of the low-lying
collective modes in the collision-less regime. The interaction of the collec-
tive modes with the thermal quasi-particles is described by the Hamiltonian
H� 3+H� 4 not yet contained in the Bogoliubov(�Popov) approximation.
Because it contains the large factor - N0 the contribution H� 3 dominates
over H� 4 and the latter can be neglected in the following. Inserting the
Bogoliubov transformation in H� 3 and going to the interaction picture with
respect to the unperturbed Bogoliubov�Popov Hamiltonian, H�� 3 in interac-
tion representation takes the form

H�� 3=
- N0

2
:
}&+

[(M (1)
}, &++(M (2)

&+, })*) :̂+
} :̂& :̂+ exp[i(|}&|&&|+) t]

+(hermitian conjugate)]+(nonresonant terms) (9)

where n� +=1�(exp(�|+ �kBT )&1) is the thermal number of quasi-particles
at frequency |+ .

Nonresonant terms, in which the frequencies of the quasi-particles
cannot add up to zero, have not been written out explicitly, because later-on
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we shall restrict ourselves to the resonance or rotating wave approxima-
tion in which they don't contribute. The relevant matrix elements M (1),
M (2) are

M (1)
}, &+=2U0 | d 3x �0v&(u*}u++ 1

2 v*} v+)+(& W +)

(10)

M (2)
&+, }=2U0 | d 3x �0u&*(v*+v}+ 1

2u*+u})+(& W +)

M (1)
}, &+ describes a scattering process in which one atom is scattered out of

the condensate by the absorption of the two quasi-particles &, + out of and
the emission of the new quasi-particle } into the thermal bath. Likewise
M (2)

&+, } describes a scattering process where an incoming thermalquasipar-
ticle } is absorbed, again an atom is kicked out of the condensate, and two
quasi-particles &, + are emitted into the thermal bath. The scattering
amplitudes for both processes are linearly superposed due to the phase-
coherence of the condensate on the time-scale of the relaxation process
induced by the scattering process.

Taking H�� 3 into account the equations of motion of :~^ &(t) in the interac-
tion picture :̂&(t)=:~^ &(t) exp(&i|&t) become

:~^* &= &
i
�

- N0

2
:
}+

[[M (1)
&, }++(M (2)

}+, &)*] :~^ }:~^ + exp[i(|&&|+&|}) t]

+2[(M (1)
}, &+)*+M (2)

&+, }] :~^ +
+ :~^ } exp[i(|&+|+&|}) t]] (11)

If the back-action of the collective mode on the quasi-particle operators :̂+ ,
:̂} in (11) can be ignored, the new term in this equation of motion acts like
an effective random force operator. In the resonance approximation the
average of this force operator vanishes. In addition it is white noise, in
good approximation, if the frequencies |}&|+&|& and |}+|+&|& it
contains form a closely spaced quasi-continuum near 0 in a neighborhood
which is broad compared to the resulting damping rate #& . For an explicit
display of this quasi-continuum in a concrete example see ref. 14. In as
much as this condition is satisfied for large condensates the Markoff-
assumption made earlier is justified. All terms in the fluctuating force term
not containing frequencies near frequency 0 are non-resonant and can be
omitted in comparison with resonant terms.

As we recalled in the previous section, the noise term is always accom-
panied by a dissipative term, and, due to the Kramers�Kronig relation,
also by a frequency shift. Thus the complete quantum Langevin equation
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in resonance approximation and in Markoff approximation must take the
form of (6)

:̂* &=&i(|&+$&) :̂&&#& :̂&+!� &(t) (12)

where !� &(t) is given by the second term in (11).
The damping rates #& will be derived below, but we can also simply

use (8) and represent them in the form

#&= 1
2 |

+�

&�
dt([!� &(t), !� +

& (0)]) (13)

Evaluating the commutator, taking the thermal expectation value, and per-
forming the time integral in (13) we obtain

#&=
?N0

�2 :
}, +

[ |(M (1)
}, &+)*+M (2)

&+, } |2 (n� +&n� }) $(|}&|+&|&)

+|M (1)
&, }++(M (2)

}+, &)*| 2 (n� }+ 1
2) $(|}+|+&|&)] (14)

The first term describes Landau-damping of the mode & by scattering a
quasi-particle from mode + to mode } and is equivalent to a result derived
in ref. 10 by the golden rule. The second term in Eq. (14) describes Beliaev
damping, where the mode & decays into two modes }, +. It survives even
for T � 0 where n� } � 0 for all modes. However, for low-lying modes in
traps there are only very few modes, or no modes at all, into which decay
under energy conservation can occur, and this contribution to the damping
is then negligible.

Let us now derive the dissipative term of the quantum Langevin equa-
tion. To this end we consider the equations of motion for (d�dt)(:~^ +

+ :~^ }) and
(d�dt)(:~^ + :~^ }), keeping again only the resonant terms. Integrating these
equations over time from &� to t and inserting the result back into the
equation of motion for :~^ & we obtain

d
dt

:~^ &=&:~^ &
- N0

�2 :
+} \

(n� ++1�2) |M (1)
&, }++(M (2)

}+, &)*|2

=+i(|++|}&|&)

+
(n� +&n� }) |(M (1)

}, &+)*+M (2)
&+, } | 2

=+i(|}&|+&|&) + (15)

&
i
�

- N0

2
:
}+

[[M (1)
&, }+++(M (2)

}+, &)*] :~^ }(&�) :~^ +(&�)

_exp[i(|&&|+&|}) t]+2[(M (1)
}, &+)*+M (2)

&+, }] :~^ +
+ (&�) :~^ }(&�)

_exp[i(|&+|+&|}) t]] (16)
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where the limit = � +0 is implied. The second term on the right hand side
is the fluctuating force term again, now more rigorously expressed in terms
of the reservoir operators at the initial time at &�. Taking the limit with
(=&i|)&1 � ?$(|)+iP�|, where P�| denotes the principal part under a
frequency integral, we obtain the result (14) for the damping rate and also
the frequency shifts $& in the quantum Langevin equation. They are given
by the Kramers�Kronig relation

$&=&
1
?

P | d|
#(|)

|&|&
(17)

where we defined |& #(|&)=#& .

5. DAMPING RATES

In the following we shall neglect the second term in (14), because as
discussed it cannot contribute for low lying modes. Our goal in this section
is the evaluation of the first term in (14) in a well defined approximation,
the local density and the Thomas�Fermi approximation. The local density
approximation amounts to the treatment of the quasi-continuum of the
spectrum of frequencies |}&|+&|& as a continuum whose density is
given by the semiclassical mode-densities of the frequencies |+ , |} . Why
these frequencies lie much higher than the collective mode frequency |&

will become clear below. The Thomas�Fermi approximation applies to
large condensates(24) and amounts to neglecting the kinetic energy term in
the Gross�Pitaevskii equation. The collective modes satisfy E&<<+=
U0 |�0(0)| 2 and can be represented as(4)

u&(x)=\�U0n0(x)
2�|&

+
1
2 �

�|&

2U0 n0(x)+ /&(x)

(18)

v&(x) =\&�U0n0(x)
2�|&

+
1
2 �

�|&

2U0 n0(x)+ /&(x)

with � d 3x |/&(x)|2=1. The functions of the low-lying states /&(x) are
known(25�29) in the hydrodynamic (long-wavelength) and Thomas�Fermi
approximation (and neglecting the influence of the thermal cloud which sits
mainly outside the condensate and therefore has little influence on its collec-
tive excitations). In spatially isotropic parabolic traps they have the form(25)

/&(x)=
1

r3�2
TF

P (2n&)
l&

(x�rTF)(x�rTF)l
& Yl&m&

(%, .) 3(1&x�rTF) (19)

The normalized polynomials P (2n)
l (x) are known explicitly.(26)
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The high-lying quasiparticle modes can be represented as(4)

u}(x)=
E}+ p2

} �2m

- 2E}p2
}�m

eip} } x��, v}(x)=&
E}& p2

} �2m

- 2E}p2
}�m

eip} } x�� (20)

with the local energies in Thomas�Fermi approximation

E}=E( p} , x)=�\p2
}

2m
+|U0 n0(x)|+

2

&U 2
0 n2

0(x) 3(+&V(x)) (21)

and n0(x)=N0 |�0(x)|2=(+�U0)(1&�i (xi �r (i)
TF)2), and r (i)

TF=- 2+�|2
i are

the three main Thomas�Fermi radii.
Let us consider now the Landau-damping of a low-lying phonon mode

|& . If the modes +, } involved in the scattering process were also low-lying
we could use Eq. (18) and would obtain, with E}=E&+E+

(M (1)
}, &+)*+M (2)

&+, }=
3U0

4 - 2 | d 3x �0/} /*+/&* �E+E&E}

U 3
0 n3

0(x)
(22)

However, in the limit of low-lying modes where E& , E+ , E}<<U0n0 this
matrix element becomes very small, i.e., low-lying modes cannot
significantly contribute to Landau damping of other low-lying modes.
Therefore the relevant modes +, } are in fact not low lying, local density
approximation is applicable, and we can use Eq. (20) for their representa-
tion. The matrix-element for E&<<E+ , E} can be expanded in E&�+ to
lowest order around E}=E+ and becomes then

(M (1)
}, &+)*+M (2)

&+, }=�E&U0

2N0
| d 3x /&*(x) exp(i(p}&p+) } x)) F(E+ , p+)

(23)

with

F(E+ , p+)=
p2

+

2m
3E 2

++( p2
+�2m)2

E+(E 2
++( p2

+ �2m)2 (24)

It will be very convenient later to express the product /&*(x) /&(x$) by the
associated Wigner-function W& via

/&*(x) /&(x$)=|
d 3k

(2?)3 e&ik } (x&x$)W& \1
2

(x+x$), k+ (25)
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In the following we denote

(x+x$)�2 � x, x&x$ � r (26)

The rate for Landau-damping can then be written as

#&=CE 2
& | d 3x |

d 3k
(2?)3 W&(x, k) :

+

:
}

F 2(E+ , p+)

_| d 3r ei��(p}&p+&�k) } r $(E}&E+&E&)
sinh2 (E+ �2kBT )

(27)

with

C=
?
8�

U0

kBT
(28)

The sums over the states + and } are only symbolic, because in the
local-density approximation the discrete states have been replaced by a
continuum which is normalized on the $-function. Concretely, under the
integral over x the sums over the energy levels of the scattering quasi-par-
ticles +, } are in the local density approximation replaced locally by classi-
cal phase-space averages for fixed E+ , E} and final integration over E+ and
E} which takes automatically care of the normalization on the $-function.
Thus

:
+

} } } � :
(x)

+

} } } =| dE+ |
d 3p+

(2?�)3 $(E+&E( p+ , x)) } } } (29)

In the following �+ and �} will be interpreted according to Eq. (29).
The spatial integration over r can be done and produces a momentum-con-
servation factor (2?�3) $ (3)(p} &p+ &�k). Next the integrations over p}

and E} contained in �} can be performed, which just cancel the $-functions
of overall momentum and energy conservation and replace everywhere else
E} � E++E& and p} � p+ +�k. Then the expression for #& is reduced to

#&=CE 2
& | d 3x |

d 3k
(2?)3 W&(x, k) | dE+

_|
d 3p+

(2?�)3 $(E+&E( p+ , x))
F 2(E+ , p+)

sinh2 (E+ �2kBT)

_$(E++E&&E( |p++�k|, x)) (30)
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Next the integration over the directions of p+ relative to k is carried out by
using up the second of the two $-functions explicitly displayed in Eq. (30).
This produces a factor 2? for the azimuthal angle, and a factor |�E( p+ , x)�
�p2

+ |&1 (2p+�k)&1 from the integration over cos % between &1 and 1,
where % is the angle between k and p+ . Finally the integration over the
absolute value p+ is done using up the last $-function, which picks out the

x-dependent momentum-value p (0)
+ =- 2m - - E 2

++U 2
0 n2

0(x)&U0n0(x)
leaving us with the expression

#&=
CE 2

&

4?2�3 | d 3x |
d 3k

(2?)3

W&(x, k)
�k |

_dE+

F 2(E+ , p (0)
+ )

4(�E( p (0)
+ , x)��( p (0)

+ )2)2 sinh2 (E+ �2kBT )
(31)

We now have to face the difficulty to evaluate the conditional average
of (�k)&1. The rigorous way to do this, which unfortunately leads to multi-
ple integrals which are tedious to evaluate, is to invert (25) which yields

|
d 3k

(2?)3

W&(x, k)
�k

=| d 3r
/&*(x+r�2) /&(x&r�2)

2?2�r2 (32)

A much simpler way consists in expressing the desired average by the local
sound-velocity - +�m c� &(x) defined by

|
d 3k

(2?)3

W&(x, k)
�k

=�+
m

c� &(x)
E&

|/&(x)|2 (33)

and estimating the dimensionless sound-velocity c� &(x) semi-classically as
c� &(x)r- 1&(x�rTF)2 with the geometrical mean Thomas�Fermi radius
rTF=(2+�m|� 2)1�2. Of course the use of the semi-classical approximation for
the low lying collective mode is highly questionable and cannot be quan-
titatively accurate. Still we may like to use it as a rough estimate in a case
where an accurate evaluation is not required or too time consuming. Below
we shall check this approximation in two cases, where it cannot be expected
to be particularly good.

We now introduce scaled variables E� +=E+ �(N0U0�2
0(x)) and x~ =

x�rTF , x~ $=x$�rTF with dimensionless mode-functions /~ &(x~ )=r3�2
TF /&(x).

Altogether, using (32), we are left with the result

#&=
(a3n0(0))1�2 E 2

&

2(2?)3�2 �2|�
H& \kBT

+ + (34)
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with the dimensionless function

H&(z)=| d 3x~ | d 3x~ $
/~ &*(x~ ) /~ &(x~ $)(1&(x~ +x~ $)2�4)

(x~ &x~ $)2

}
1
z | dE� + \ 2E� ++1&- E� 2

++1

(E� 2
++1) sinh((1�2z) E� +(1&(x~ +x~ $)2�4))+

2

(35)

For z>>1 the functions H& become linear in z=kBT�+ and reduce to

H&(z) �� 3?z | d 3x~ | d 3x~ $
/~ &*(x~ ) /~ &(x~ $)

(x~ &x~ $)2 (1&(x~ +x~ $)2�4)
(36)

The result for the spatially homogeneous case(9) can be recovered from
Eq. (36) for kBT>>+ by using the scaled homogeneous condensate density
1&x~ 2 � 1, the phonon energy E&=- +�m �k& , and normalized plane
waves to evaluate � d 3x~ � d 3x~ $/~ &*(x~ ) /~ &(x~ $)�(x~ &x~ $)2=(2?2�k&) - m|� 2�2+
which, together with (34), (36) yields #&=(3?�8) ak&(kBT�n).

For isotropic traps the asymptotic result (36) becomes

Hn&l&m&
(z) �� 6?z

(2l&+1)(l&&m&)!
(l&+m&)!

_|
1

0
dx~ x~ 2P (2n&)

l&
(x~ ) x~ l& |

1

0
dx~ $ x~ $2P (2n&)

l&
(x~ $) x~ $l&

_|
1

&1
|

1

&1
|

2?

0 \
d(cos %) d(cos %$) d, Pm&

l&
(cos %) Pm&

l&
(cos %$)

_exp(&im&,)
(2x~ x~ $(cos % cos %$+sin % sin %$ cos ,)&2)2

&(x~ 2+x~ $2&2)2 +
(37)

where the functions Pm
l (cos %) are the associated Legendre functions

appearing in the spherical harmonics.
If instead of (32) we use (33) to evaluate the conditional average of

(�k)&1 we obtain in place of (37)

Hn&l&m&
(z) �� z

3 - 2 ?3�|�
E&

|
1

0
dx~

x~ 2

- (1&x~ 2)
(P (2n&)

l&
(x~ ) x~ l&)2 (38)

As was already emphasized, this result can only serve as a rough estimate
for (37).
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In the simplest case n&=1, l&=0, which is the isotropic fundamental
breathing mode, we have P0

0(cos(%))=1, P (0)
1 (x)= 3

2 - 7 (1& 5
3x2). In this

case (37) can be reduced to the numerical evaluation of a two-dimensional
integral and we obtain

#0, 0
�� 26.42. .|0(a3n0(0))1�2 kBT

+
(39)

Equation (38) yields via elementary integration #0, 0 �� 27.27. .|0

(a3n0(0))1�2 kBT�+ which agrees surprisingly well with the more rigorous
result (39). Can this be considered typical? The answer is negative:

The simple result (38) lends itself to further evaluation for modes with
l&{0. For the surface modes with n&=0, l&{0 we obtain the estimate

#0, l&
�� |0(a3n0(0))1�2 kBT

+
3?2

4
- l&

1 (l&+5�2)
1 (l&+2)

(40)

In this case a numerical comparison with the more accurate expression (37)
for the case l&=2 shows that the latter is about 30 percent smaller,
probably giving us a realistic impression of the accuracy of the approxima-
tion for c� &(x). For larger values of l& and n& the accuracy of this estimate
can be expected to improve.

6. DISCUSSION AND CONCLUSION

In the present paper the many-body problem of collective modes in
Bose�Einstein condensates in interaction with thermal quasi-particles was
addressed by a method based on the equations of motion of the quasi-par-
ticle operators. This method leads directly to a quantum Langevin equa-
tion for the creation and annihilation operators of the collective modes,
containing fluctuating force terms, a dissipation term, and a frequency shift
term. These quantities are related by the fluctuation-dissipation relation
and the Kramers�Kronig relation. Each part of the interaction-Hamil-
tonian beyond the unperturbed Bogoliubov�Popov Hamiltonian in prin-
ciple gives rise to separate contributions to all three types of terms. We
have here considered only the most important of these, namely the part of
the interaction Hamiltonian giving rise to Landau-damping.

Dissipation can arise only from energy conserving real processes,
which is manifest by the appearance of the energy conserving $-functions
in the expressions for the damping rates. This means that only resonant
processes can contribute to these rates. In finite systems like the trapped
condensates this causes a problem, because there the mode spectrum is dis-
crete, the spectrum of frequency differences |}&|+&|& near 0 is only a
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quasi-continuum, and the dissipation rates in a strict sense have to vanish.
In other words, in a strict sense, what is seen as dissipation can only be a
``short-time'' effect; waiting for a sufficiently long time interval on the order
of the inverse spacing of the quasi-continuum, revivals would have to
appear. These will not be seen, however, at least in large condensates to
which the local density and Thomas�Fermi approximation can be applied,
because not only the energy stored in the collective mode but also the ther-
mal energy of the system is available to bring into play a large number of
modes which will lead to an irretrievable dissipation of the energy over
many degrees of freedom. Therefore it is reasonable in such cases, if not
required, to eliminate all recurrence effects, replacing the quasi-continuum
by a true continuum, which is what the local density approximation does.
Using this device we have arrived at definite results for the temperature-
dependent damping rates of any collective mode, in an isotropic trap,
which can be evaluated by computing numerically a multidimensional
definite integral, e.g., by a Monte-Carlo routine.

The different pieces of the perturbation Hamiltonian also each give
rise to frequency shifts. These are generated by virtual processes which do
not require energy conservation, i.e., resonance. However the effect of the
non-resonant processes is suppressed by corresponding energy-denominators
and small. Here we have limited our considerations only to those processes
which can also become resonant. We have here not evaluated the frequency
shifts further using the local density approximation as we have done for the
damping rates.

Experimental results for temperature dependent damping rates and
frequency shifts have been obtained for anisotropic traps only, (3) and we
therefore refrain from a comparison with our explicit results for isotropic
traps. Detailed comparisons have been made for anisotropic traps in
refs. 16 and 17 where heavier and more powerful formalisms were brought
to bear together with a stronger reliance on numerical work.

The goal here has been more modest, namely to use a minimum
amount of numerical work and to apply the direct and intuitive quantum
Langevin approach to the fluctuations, damping rates and frequency shifts
of collective modes in spatially inhomogeneous trapped Bose�Einstein con-
densates.
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